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Abstract. The investigation of genetic and evolutionary algorithms
on Ising model problems gives much insight how these algorithms
work as adaptation schemes. The Ising model on the ring has been
considered as a typical example with a clear building block structure
suited well for two-point crossover. It has been claimed that GAs
based on recombination and appropriate diversity-preserving methods
outperform by far EAs based only on mutation. Here, a rigorous analysis
of the expected optimization time proves that mutation-based EAs are
surprisingly effective. The (1 + λ) EA with an appropriate λ-value is
almost as efficient as usual GAs. Moreover, it is proved that specialized
GAs do even better and this holds for two-point crossover as well as for
one-point crossover.

Keywords: Ising model, mutation vs. recombination, expected opti-
mization time, fitness sharing

1 Introduction

Nowadays, genetic algorithms (GAs) and evolutionary algorithms (EAs) are
mainly applied as optimization algorithms. Holland [3] has designed GAs as
adaptation systems. The building block hypothesis (see Goldberg [2]) claims
that GAs work by combining different building blocks in different individuals by
crossover (or recombination). There is a long debate on the role of mutations in
this context.

Naudts and Naudts [7] have presented the Ising model as an interesting
subject for the investigation of GAs and EAs. Ising [4] has described the model
now called Ising model to study the theory of ferromagnetism. In its most general
form, the model consists of an undirected graph G = (V, E) and a weight function
w : E → R. Each vertex i ∈ V has a positive or negative spin si ∈ {−1, +1}.
The contribution of the edge e = {i, j} equals fs(e) := si · sj · w(e). The fitness
f(s) of the state s equals the sum of all fs(e), e ∈ E, and has to be maximized.
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The Ising problem in its general form is NP-hard. Nevertheless, there are
quite efficient algorithms for this problem (Pelikan and Goldberg [8]). For the
investigation of the adaptation capabilities of simple GAs and EAs, one is in-
terested in the case where w(e) = 1 for all e ∈ E. By an affine transformation,
we consider the state space {0, 1}n instead of {−1, +1}n. The fitness f(s) equals
the number of monochromatic edges, i. e. edges connecting vertices of equal spin
or color. The states 0n and 1n are the only optimal states for connected graphs.
Connected monochromatic subgraphs are schemata of high fitness and, there-
fore, building blocks. However, the fitness function has the property of spin-flip
symmetry, i. e., f(s) = f(s) for all states s and their bitwise complement s.
Therefore, 0-colored building blocks compete with 1-colored building blocks.

The Ising model on the ring is of particular interest. The ring is a graph
on V = {1, . . . , n} with edges {i, i + 1}, 1 ≤ i ≤ n − 1, between neighbored
vertices and the turn-around edge {n, 1}. Building blocks are also blocks in the
string (if the positions 1 and n are considered as neighbored) and two-point
crossover can cut out a building block. Extensive experiments on GAs for this
problem have been reported by van Hoyweghen [9], van Hoyweghen, Goldberg,
and Naudts [12], and van Hoyweghen, Naudts, and Goldberg [11]. These papers
contain also discussions how the algorithms work and some theoretical results
but no run time analysis. In recent years, the rigorous run time analysis of EAs
has led to interesting results. Here, this approach is applied to the Ising model
on the ring.

Sections 2, 3, and 4 analyze mutation-based algorithms. Experiments have
led to the conjecture that these algorithms are quite inefficient for the Ising
model. The authors of the papers mentioned above do not explicitly state such a
conjecture but they and many others have argued in discussions that mutation-
based EAs will need exponential optimization time. In Section 2, we analyze
randomized local search (RLS) flipping one bit per step and applying a plus-
strategy for selection. This simple algorithm finds the optimum in an expected
number of O(n3) steps and the constants in the O-term are surprisingly small.
Based on this analysis, a similar bound is obtained in Section 3 for the (1+1) EA.

In Section 4, we analyze parallel variants of the algorithms, parallel RLS
(PRLS) and the (1+λ) EA, respectively. They produce λ offspring per generation
and select a best individual. For λ = n/ log n, the expected optimization time
consists of O(n2 log n) generations and O(n3) fitness evaluations. This analysis
follows the line of research started by Jansen and De Jong [5] and Jansen, De
Jong, and Wegener [6]. In Section 5, we compare our results with the experiments
on GAs.

It would be even more interesting to obtain also bounds on the expected opti-
mization time of GAs. We are not able to do this for the GAs used in experiments
which apply an island model to preserve diversity. We analyze in Section 6 the
GA introduced by Culberson [1] and known as GIGA (Gene Invariant GA) and
in Section 7 an idealized GA with fitness sharing. Both algorithms are tailored
to cope with the given problem and perform better than RLS and the (1+1) EA.
We finish with some conclusions.
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2 Randomized Local Search

Randomized Local Search (RLS) chooses the first search point x ∈ {0, 1}n uni-
formly at random. Afterwards, it chooses a position i ∈ {1, . . . , n} uniformly at
random, computes x′ by flipping bit i of x, and replaces x by x′ iff f(x′) ≥ f(x).
We are interested in the expected number of f -evaluations until x ∈ {0n, 1n}.

Instead of maximizing f, we investigate the equivalent problem of minimizing
the number i of monochromatic blocks on the ring. This number is even for non-
optimal points and has to be decreased from at most n to 1. For 2 ≤ i ≤ n and i
even, let ti(n) be the expected time until i is decreased if we start with a worst
search point with i blocks. We estimate the expected run time by the sum of all
ti(n) and the term 1 for the initialization step.

By the pigeon-hole principle, there is one block whose length is bounded
above by N := �n/i�. We investigate a shortest block B of the first search point
x. If i is not decreased, the length of B can change at most by 1 per step.
We distinguish relevant steps (either decreasing i or changing the length of B)
from the other steps called non-relevant. First, we only investigate the relevant
steps. It is possible that some block B′ �= B gets shorter than B and vanishes
earlier. Pessimistically, we ignore this. Only if B grows to length N + 1 we
switch our interest to another block whose length is at most N. Pessimistically,
we assume that this length equals N. Then we obtain the following Markoff
chain on {0, 1, . . . , N} where the state j describes the length of the considered
block. If j ∈ {2, . . . , N −1}, by symmetry, the transition probability p(j, j−1) =
p(j, j + 1) = 1/2. By the discussion above, state “N + 1” is replaced by N and
p(N, N −1) = p(N, N) = 1/2. State 1 is untypical, since there are two bits whose
flip increases the block length but only one decreasing it. Hence, p(1, 0) = 1/3
and p(1, 2) = 2/3. Let TN (j) be the expected time until reaching state 0 when
starting in state j.

Lemma 1. If j ≥ 1, TN (j) = 4N − 1 + N(N − 1) − (N − j + 1)(N − j) =
2Nj + 2N + j − j2 − 1.

Proof. We fix N and omit the index N . We prove by induction that

T (j) = 2 · (N − j + 1) + T (j − 1),

if j ≥ 2. By the law of total probability,

T (N) = 1 + (1/2) · T (N) + (1/2) · T (N − 1)

implying that T (N) = 2 + T (N − 1). If j < N , by induction hypothesis,

T (j) = 1 + (1/2) · T (j + 1) + (1/2) · T (j − 1)
= 1 + (N − j) + (1/2) · T (j) + (1/2) · T (j − 1).

Solving for T (j), this proves the claim. Finally,

T (1) = 1 + (1/3) · T (0) + (2/3) · T (2)
= 1 + (2/3) · (2 · (N − 1) + T (1))

implying that T (1) = 4N − 1. This proves the lemma for j = 1 and, if j ≥ 2,
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T (j) = 2 · (N − j + 1) + 2 · (N − j + 2) + · · · + 2 · (N − 1) + 4N − 1 (∗)

which implies the lemma. 	


Equation (∗) implies that TN is monotone increasing and concave, i. e.,

TN (j + 1) − TN (j) ≤ TN (j) − TN (j − 1).

In order to estimate the expected number of relevant steps, it is sufficient
to sum up all T�n/i�(�n/i�), i ∈ I := {j | 2 ≤ j ≤ n, j even}. Since TN (N) =
N2 + 3N − 1, we obtain

∑

i∈I

T�n/i�(�n/i�) ≤ n2
∑

i∈I

(1/i2) + 3n
∑

i∈I

(1/i) − �n/2�

≤ 0.411 · n2 + 1.5 · n lnn + n.

We are interested in the probability that a step is relevant. There are 4
positions such that the length of B changes if one of the corresponding bits
flips and the length of B is at least 2. If B has length 1, there are only 3 such
positions. The expected waiting time until one of k bits flips is exactly n/k. In
order to get good bounds, we estimate the expected number of relevant steps
where the block length equals 1. Since the probability of reaching state 0 and
finishing a phase equals 1/3, the expected number of steps in state 1 equals 3
independent of i. Hence, (3/2)n of the relevant steps have to be multiplied by
n/3 and the other ones by n/4 to obtain an upper bound on the expected run
time.

Theorem 1. The expected number of steps until RLS finds an optimum for the
Ising model on the ring is bounded above by

TRLS(n) = 0.103 · n3 + 0.375 · n2 · (lnn + 1).

This bound is pessimistic in the following aspects:

– the first search point can have less than the maximal number of blocks,
– the first search point with i blocks can contain a block which is shorter than

�n/i�,
– larger blocks can get shorter than the considered block.

In any case, the bound of Theorem 1 is surprisingly small when considering the
discussions about this problem. Experiments have shown that, in the case i = 2,
the shorter block has an average block length of 0.28n when reaching this phase.
It is easy to obtain the following result.

Theorem 2. Starting with two blocks of length εn and (1 − ε)n, 0 < ε ≤ 1/2 a
constant, the expected number of steps until RLS finds an optimum for the Ising
model on the ring is Θ(n3).
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3 The (1+1) EA

The (1+1) EA can be considered as the simplest evolutionary algorithm. It works
like RLS with the exception of the search operator. The mutant x′ is obtained
from x by flipping each bit of x independently of the others with probability
1/n. Steps without flipping bits do not count since they do not lead to a fitness
evaluation. Let e = 2.718 . . . be the Eulerian constant.

Theorem 3. The expected number of steps until the (1+1) EA finds an optimum
for the Ising model on the ring is bounded above by T(1+1)(n) = (e − 1) · (1 +
o(1)) · TRLS(n) ≤ 0.177 · n3 + o(n3).

Proof. We use the same ideas as in the proof of Theorem 1. In particular, we
concentrate our analysis on the length of one block and we consider first only
relevant steps, i. e., steps changing the length of the chosen block. We investigate
another block if the chosen block has a length larger than �n/i�. The main idea
is that we do not estimate the number of steps directly but we compare the
(1+1) EA with RLS. For this purpose, we investigate some stochastic processes
“between” RLS and the (1+1) EA.

We start with RLS∗ which applies the search operator of the (1+1) EA but
only mutants x′ where exactly one bit has flipped are considered for selection.
Then the expected run time increases by the expected waiting time for a step
flipping exactly one bit. This waiting time equals e−1 for a Poisson distribution
with λ = 1. Here we obtain a factor of (e − 1) · (1 + o(1)) since the number of
flipping bits is asymptotically Poisson distributed. This indeed is the essential
factor why the (1+1) EA is slower than RLS. If the number of blocks is not too
large, the probability that a step flipping more than one bit is relevant is much
less than the corresponding probability for steps flipping one bit. The reason is
that the other flipping bits typically increase the number of blocks.

Nevertheless, there are relevant steps flipping more than one bit and there are
relevant steps changing the length of the considered block by more than 1. For
each search point x let p+

k (x) be the probability that the next step is accepted
and produces a search point where the length of the considered block B has been
increased by k and let p−

k (x) be the corresponding probability for decreasing the
length of B. We know from Section 2 that p+

k (x) may be larger than p−
k (x).

To simplify the analysis, we investigate two further stochastic processes called
(1+1) EAsym and RLSsym. They are based on the algorithms (1+1) EA and RLS,
respectively, but, if p+

k (x) > p−
k (x), the probability of increasing the length of B

is decreased to p−
k (x). As before, we consider another block if the length of B is

larger than �n/i�. First, RLS∗
sym is obviously faster than RLS∗. We show that the

expected run time of the (1+1) EAsym is bounded by the upper bound proven
for RLS∗ and, therefore, also for RLS∗

sym and, later, we compare the (1+1) EA
and the (1+1) EAsym.

Let At be the algorithm working t steps like the (1+1) EAsym and afterwards
like RLS∗

sym. We prove by induction on t that the expected run time of At is
not larger than the upper bound obtained for RLS∗. This is true for t = 0,
since A0 = RLS∗

sym. For the induction step, we compare At and At+1. They are
identical for the first t steps and we consider the (random) search point x after t
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steps. The probability of a relevant step is for the (1+1) EAsym not smaller than
for RLS∗

sym. We compare the algorithms conditioned on some events and prove
the claim for each of the cases. If the next step is neither relevant for At nor for
At+1, the claim is obvious since the upper bound for RLS∗ only depends on the
length of the considered block. The perhaps larger probability of a relevant step
of At+1 is only in favor of At+1. Finally, we have to compare the effect of relevant
steps. Instead of having steps changing the length of B by +1 and −1 (with the
same probability), we now may change the length of B by +k and −k (with
the same probability). Afterwards, we apply RLS∗

sym in both cases. The upper
bound for RLS∗ (and also RLS∗

sym), namely the function TN from Section 2 is
increasing and concave. Therefore, a ±k-step instead of a ±1-step reduces the
expected run time, i. e., (T (j + k) + T (j − k))/2 < (T (j + 1) + T (j − 1))/2, if
k ≥ 2. For t → ∞, we obtain the claim.

Finally, we have to compare the (1+1) EA and the (1+1) EAsym. We inves-
tigate a phase of length n7/2. By Markoff’s inequality, the probability that the
(1+1) EAsym needs more than n7/2 steps is O(n−1/2) = o(1). In this case, we
repeat the arguments for the next phase leading to an additional 1+o(1) factor.
In the following, we investigate a phase of length n7/2. Events which altogether
have a probability of o(1) can be ignored since then the phase can be considered
as unsuccessful also leading to a 1 + o(1) factor.

Let k be the length of the considered shortest block B, w. l. o. g. a block of
ones. If k ≥ 4, the string contains 04111k−41104. We consider the substrings
0411 and 1104. The probability that a phase contains a step with at least four
flipping bits at these positions is o(1) and this event can be ignored. Steps with
at most three flipping bits at these positions do not eliminate one of the blocks.
The situation is symmetric with respect to lengthenings and shortenings of B.

We are left with the situation k ≤ 3. Recalling the analysis of RLS in Sec-
tion 2, it is easy to obtain the result that the (1+1)∗EAsym has an expected
number of O(n) steps where k ≤ 3. By Markoff’s inequality, we can ignore runs
where this number is larger than n3/2. The probability that a phase contains a
step with at least two flipping bits in the substring 0k1k0k is o(1).

Finally, decreasing the length of B from k to 0 does not imply that we
decrease the number of blocks. A new block may be created somewhere else. The
probability of no bit flipping elsewhere is at least e−1. Hence, with a probability
of 1−e−1 we are still in the same situation as before, i. e., we have the same values
of k ∈ {1, 2}. This happens on average e/(e − 1) times, each time increasing the
expected run time by O(n2). Hence, we have proved the theorem. 	


It is worth noticing that we were not able to prove such a small bound by
analyzing the (1+1) EA directly. It was helpful to analyze the simpler algorithm
RLS and to compare RLS and the (1+1) EA.

Finally, we prove a lower bound similarly to the lower bound of Theorem 2.

Theorem 4. Starting with two blocks of length εn and (1 − ε)n, 0 < ε ≤ 1/2
a constant, the expected number of steps until the (1 + 1) EA finds an optimum
for the Ising model on the ring is Θ(n3).

We omit the proof here. The essential argument is that the function TN from
Lemma 1 is concave but the curvature is not strong. In particular, TN (j − k) +
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TN (j + k) = TN (j − 1)+TN (j +1)− ck where ck only depends on k. Since steps
changing the block length by k have a probability of Θ(n−k), we do not save too
much by steps changing the block length by at least 2.

4 Parallel RLS and the (1+λ) EA

A GA works with a population of s(n) individuals and, in most cases, run time is
defined as the number of generations. The number of fitness evaluations is larger
by a factor of s(n). For RLS and the (1+1) EA, the number of generations
equals the number of fitness evaluations. In order to have a fair comparison with
GAs, we consider population-based RLS and (1+1) EA. Parallel RLS (PRLS)
or (1+λ) RLS creates λ children from the parent x using the search operator of
RLS. The children are created independently. Selection chooses x if all children
are worse and chooses one of the fittest children uniformly at random otherwise.

For s(n) = n we get an expected number of O(n2 log n) generations and
O(n3 log n) fitness evaluations. While reducing s(n) to n/ log n does not affect
the number of generations, it reduces the number of fitness evaluations to O(n3).

Theorem 5. The expected number of generations until (1+�n/log n�) RLS finds
the optimum for the Ising model on the ring is bounded above by O(n2 log n) and
the expected number of fitness evaluations by O(n3).

Proof. It is sufficient to investigate the number of generations since each gen-
eration consists of �n/log n� fitness evaluations. Again, let B be the con-
sidered block. The probability that no child shortens or lengthens B equals
(1 − c/n)�n/log n� = 1 − Θ(1/log n). The expected waiting time for a generation
with a child changing B equals Θ(log n). If x contains i blocks, the expected
number of children with the same number of blocks as x is Θ(i/log n) and the
probability that this number is bounded by O(i/log n) is at least 1/2 (Markoff’s
inequality).

If i ≥ log n, the probability of choosing a child where B is changed, if such
a child is created, is Ω(log n/i). The waiting time for such a step is O(i/log n).
Hence, each step has a probability of Ω(1/i) of being relevant. By Lemma 1,
the expected number of relevant steps to decrease i is O(n2/i2) and this takes
O(n2/i) generations on average. For all i, log n ≤ i ≤ n and i even, we obtain a
bound of O(n2 log n).

If i < log n and one child changes B, the probability that all other children
have more blocks equals (1 − Θ(i/n))�n/log n�−1 which is bounded below by a
positive constant. Then the generation is relevant. Hence, the expected waiting
time for a relevant generation equals Θ(log n) and the expected number of gen-
erations is bounded by O((n2 log n)/i2). Considering all i < log n and even, this
gives an additional term of O(n2 log n). 	


The (1+λ) EA applies the search operator of the (1+1) EA and produces
independently λ children from the parent which is the only individual of the
current population. We have to be careful with the selection operator. It is likely
that many children are a replica of the parent. In order to guarantee exploration
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of the search space, we select the parent x only if all children y �= x have a worse
fitness than x. Otherwise, we randomly select an individual among the fittest
children y �= x.

Combining the methods from Section 3 and Theorem 5 we obtain the follow-
ing result.

Theorem 6. The expected number of generations until the (1 + �n/log n�) EA
finds the optimum for the Ising model on the ring is bounded above by O(n2 log n)
and the expected number of fitness evaluations by O(n3).

5 A Comparison with GA Experiments

We have no doubt that crossover can play an essential role for the Ising model
on the ring. A theoretical fundament for this argument will be presented in Sec-
tions 6 and 7. Here, we want to argue that mutation-based EAs are better than
expected in many papers. Van Hoyweghen [9] claims that “the presence of spin-
flip symmetry in the one-dimensional Ising model prevents an unspecialized GA
to find an optimum in a reasonable amount of time.” Van Hoyweghen, Goldberg,
and Naudts [10] indicate in this context that “the Ising model shows that for a
certain class of optimization problems niching becomes a necessity for a GA to
solve these problems.” Our results have shown that unspecialized EAs solve this
problem in reasonable time. The upper bounds on the expected run times of RLS
(0.103n3 +0.375n2(lnn+1) and even 117, 957 for n = 100) and of the (1+1) EA
(by a factor of 1.72 slower than RLS) show this even for populations of size 1.
The time bounds are much better, namely O(n2 log n), if n/log n children are
generated in parallel. Hence, the optimization is finished in a reasonable amount
of time without any niching. Van Hoyweghen [9] has considered the case of GAs
for n = 100 and a population size of 100. The best parameters for tournament
selection and two-point crossover lead to an average number of 35, 857 genera-
tions. This can be decreased to 10, 881 using SAWing (Stepwise Adaptation of
Weights). With an Island model and a distributed GA there is a good chance
that 10, 000 generations suffice. In all these cases a population of size s(n) ≥ 100
is used. In general, it is claimed that a population size of 10.9n0.57 suffices. These
algorithms need less generations than the mutation-based algorithms examined
in this paper but they do not beat RLS with respect to the expected number of
fitness evaluations (at least for n = 100).

6 The Expected Run Time of GIGA

Although mutation-based algorithms are surprisingly efficient for the Ising model
on a ring, it is believed that GAs can be faster. It is difficult to analyze the effect
of crossover if one is interested in the expected optimization time. We are not able
to analyze distributed GAs. Therefore, we analyze GAs which are specialized to
work on the Ising model on the ring. We cannot expect to obtain the same good
time bounds for unspecialized GAs.

In this section, we analyze a simple variant of GIGA (Gene Invariant Genetic
Algorithm) introduced by Culberson [1]. The population has size 2 and consists
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of a search point x ∈ {0, 1}n and its bitwise complement x. In the initialization
step, x is chosen uniformly at random. Later, a new pair of search points (y, y) is
produced from (x, x) by crossover. Since f(x) = f(x), the new pair (y, y) replaces
(x, x) if f(y) ≥ f(x). Since we want to cut out a block in x and to replace
it by its bitwise complement, two-point crossover seems to be the appropriate
recombination operator. Let us consider the effect of crossover at the positions j
and k, 0 ≤ j < k < n. A position p is called border of x, if xp �= xp+1 or xn �= x1
if p = 0. Let i be the number of blocks of x.

Case 1: The positions j and k are not borders. Then y has i + 2 blocks and
(y, y) is not accepted.

Case 2: Exactly one of the positions j and k is a border. Then y also has i
blocks and (y, y) is accepted but the fitness is not changed.

Case 3: The positions j and k are borders. If i > 2, y has i − 2 blocks. If i = 2,
y has one block. In any case, (y, y) is accepted and the fitness is improved.

As long as x is not optimal, i ≥ 2 and there are
(

i
2

)
among

(
n
2

)
pairs of

positions which lead to an improved fitness. Hence, the expected optimization
time can be bounded above by (remember that I = {i | 2 ≤ i ≤ n, i even})

∑

i∈I

(
n

2

)
/

(
i

2

)
≤ 0.70 · n · (n − 1).

With probability 1 − o(1), the initial value of i is at least n/3. We obtain the
following results.

Theorem 7. The expected number of steps until GIGA with two-point crossover
finds an optimum for the Ising model on the ring is bounded above by 0.70 · n ·
(n − 1) and bounded below by 0.69 · n2 − o(n2).

We can generalize GIGA to (1+λ) GIGA where λ offspring pairs are produced
independently and a best one is chosen if it is not worse than the parent. We
analyze the (1+n) GIGA. The probability of producing a better offspring is
bounded below by a positive constant, if i > n1/2, and by Ω(i2/n), otherwise.
Hence, the expected number of generations equals Θ(n).

Theorem 8. The expected number of generations until the (1 + n) GIGA with
two-point crossover finds an optimum for the Ising model on the ring equals
Θ(n), the expected number of fitness evaluations equals Θ(n2).

Surprisingly, one-point crossover is almost as good as two-point crossover.
The probability that two consecutive steps with one-point crossover decrease i
is Θ(i2/n2) as for one step of two-point crossover. This leads to the following
result.

Theorem 9. The expected number of fitness evaluations until GIGA or the
(1 + n) GIGA with one-point crossover finds an optimum for the Ising model
on the ring equals Θ(n2). For the (1 + n) GIGA, the number of generations
equals Θ(n).
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7 The Expected Run Time of a GA with Fitness Sharing

The variant of GIGA analyzed in Section 6 is highly specialized. Diversity in
the population of size 2 is guaranteed by choosing always individuals with the
maximal Hamming distance. Here, we consider a GA with the unusually small
population size 2 where diversity is supported by fitness sharing. Populations
are multisets. In fitness sharing, the closeness of x and y is measured by

S(x, y) := max{1 − d(x, y)/σ, 0}
where d is an appropriate distance measure and σ is a critical value deciding
when x and y are so far from each other that they do not share fitness. In our
case, d is the Hamming distance and σ := n since we like to produce individuals
with large Hamming distance. Then, for population P , S(x, P ) is the sum of all
S(x, y), y ∈ P . The shared fitness of x in the population P is defined by

f(x, P ) := f(x)/S(x, P )

if f is the real fitness. Finally, f(P ) is defined as the sum of all f(x, P ), x ∈ P .
The following GA applies two-point crossover to produce two children and

mutations flipping each bit independently with probability 1/n.

Algorithm 1 (Steady-state GA with population size 2 and fitness sharing)

1.) The initial population P consists of two individuals chosen independently
and uniformly at random.

2.) Selection for reproduction. Both individuals x and y are chosen.
3.) Offspring creation. One of the Steps 3a and 3b is chosen uniformly at ran-

dom.
3a.) x′ := mutate(x), y′ := mutate(y), P ′ := P ∪ {x′, y′}.
3b.) (x̃, ỹ) := two-point-crossover(x, y), x′ := mutate(x̃),

y′ := mutate(ỹ), P ′ := P ∪ {x′, y′}.
4.) Selection of the next generation. Choose a population P ⊆ P ′ of size 2 with

the maximal f(P )-value.

Since we work with populations of very small size, it is not too time-consu-
ming to choose in Step 4 a population with the largest f -value. This reflects the
real idea behind fitness sharing. The shared fitness of the population should be
large.

Let the population P consist of the individuals x and y with a Hamming
distance of d = d(P ). Let i(z) be the number of borders within the individual z
and let i = i(P ) := i(x) + i(y). Then f(z) = n − i(z) and

f(x, P ) =
n − i(x)

1 − H(x, x)/n + 1 − H(x, y)/n
=

n − i(x)
2 − d/n

and

f(P ) =
2n − i

2 − d/n
.
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Hence, we can increase P by decreasing i and/or by increasing d. As long as we
do not decrease i, we hope to increase d. If d = n, we have two complementary
individuals and two-point crossover is a good operator to decrease i. Since 0 ≤
f(P ) ≤ 2n and f cannot decrease because of the plus-strategy for selection, we
try to analyze the expected time until f has been increased at least by a constant
additive term c. For this purpose, we classify the possible populations P :

– type OPT contains all P where i ≤ 1, i. e., at least one individual is optimal,
– type A(i), i ≥ 2, contains all P where i = i(P ) and d = n,
– type B contains all P where 2 ≤ i ≤ n and d < n, and
– type C contains all P where i > n and d < n.

Theorem 10. The expected number of fitness evaluations until the steady-state
GA with population size 2 and fitness sharing finds an optimum for the Ising
model on the ring is bounded above by O(n2).

Proof. All populations of type A(i) have the same fitness 2n − i. After having
increased the fitness, we will never accept a population of type A(i). Moreover,
if P = {x, y} is of type A(i), then y = x. The expected waiting time until two-
point crossover creates a population P ′ of type A(i−4) is bounded by O(n2/i2),
see Section 6. Then f(P ′) − f(P ) = 4. By standard arguments, the expected
time with populations of type A is bounded by O(n2).

For populations of type B or C, we prove that the probability of increasing
the fitness by at least 1/4 is bounded below by Ω(1/n). We have to wait for at
most 8n of such steps which proves the theorem.

Let P = {x, y} be of type B. Since d < n, x �= y. Let j be the rightmost
position where xj = yj . Then xj+1 �= yj+1 (where n+1 is identified with 1 since
we are on a ring). W. l. o. g. xj = xj+1 and yj �= yj+1. With a probability of
Ω(1/n), we choose Step 3a and only bit j is flipped when producing y′. Then
f(y′) ≥ f(y) and H(x, y′) = H(x, y) + 1. The population P ′ = {x, y′} is a
possible successor population and

f(P ′) − f(P ) ≥ 2n − i

2 − (d + 1)/n
− 2n − i

2 − d/n

=
(2n − i) · (2 − d/n) − (2n − i) · (2 − d/n − 1/n)

(2 − (d + 1)/n) · (2 − d/n)
≥ 1

4
,

since the numerator equals 2 − i/n ≥ 1 and the denominator is at most 4.
Type-C populations can be handled in a similar way. Since i ≥ n, one indi-

vidual has a block of length 1 which can be eliminated by a 1-bit flip. 	

Finally, we can consider a GA with population size 2 and fitness sharing which

produces P ′
1, . . . , P

′
n by performing Step 3 n times independently in parallel.

Then it selects a population P ⊆ P ′
i for some i which has the largest f(P )-value.

Theorem 11. The expected number of generations until the GA with population
size 2, fitness sharing, and n pairs of offspring per generation finds an optimum
for the Ising model on the ring is bounded above by O(n).
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Conclusions

The Ising model is a good model to analyze the adaptation capabilities of EAs
and GAs. In particular, the Ising model on the ring leads to surprising results.
Mutation-based algorithms and even randomized local search are much more
efficient than expected in the GA community. This is especially true if we con-
sider the number of generations in the case of producing more than one offspring.
Nevertheless, recombination can decrease the expected optimization time. This
has been proved rigorously for two specialized GAs which work with very small
populations. It is an open problem to analyze generic GAs with niching for the
Ising model on the ring.

References

1. J. Culberson. Genetic invariance: A new paradigm for genetic algorithm design.
Technical Report 92–02, University of Alberta, 1992.

2. D. E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learn-
ing. Addision-Wesley, Reading, MA, 1989.

3. J. H. Holland. Adaptation in Natural and Artificial Systems. University of Michi-
gan, MI, 1975.
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